Iterations for Elliptic Variational Inequalities

نویسنده

  • RALF KORNHUBER
چکیده

A wide range of free boundary problems occurring in engineering and industry can be rewritten as a minimization problem for a strictly convex, piecewise smooth but non{diierentiable energy functional. The fast solution of related discretized problems is a very delicate question, because usual Newton techniques cannot be applied. We propose a new approach based on convex minimization and constrained Newton type linearization. While convex minimization provides global convergence of the overall iteration, the subsequent constrained Newton type linearization is intended to accelerate the convergence speed. We present a general convergence theory and discuss several applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discontinuous Galerkin Methods for Solving Elliptic Variational Inequalities

We study discontinuous Galerkin methods for solving elliptic variational inequalities, of both the first and second kinds. Analysis of numerous discontinuous Galerkin schemes for elliptic boundary value problems is extended to the variational inequalities. We establish a priori error estimates for the discontinuous Galerkin methods, which reach optimal order for linear elements. Results from so...

متن کامل

Boundedness and pointwise differentiability of weak solutions to quasi-linear elliptic differential equations and variational inequalities

The local boundedness of weak solutions to variational inequalities (obstacle problem) with the linear growth condition is obtained. Consequently, an analogue of a theorem by Reshetnyak about a.e. differentiability of weak solutions to elliptic divergence type differential equations is proved for variational inequalities.

متن کامل

A Posteriori Error Estimates for Elliptic Variational Inequalities

We derive hierarchical a posteriori error estimates for elliptic variational inequalities. The evaluation amounts to the solution of corresponding scalar local subproblems. We derive some upper bounds for the e ectivity rates and the numerical properties are illustrated by typical examples.

متن کامل

Convergence of distributed optimal control problems governed by elliptic variational inequalities

First, let ug be the unique solution of an elliptic variational inequality with source term g. We establish, in the general case, the error estimate between u3(μ) = μug1 + (1 − μ)ug2 and u4(μ) = uμg1+(1−μ)g2 for μ ∈ [0, 1]. Secondly, we consider a family of distributed optimal control problems governed by elliptic variational inequalities over the internal energy g for each positive heat transf...

متن کامل

Optimal Control of Problems Governed by Abstract Elliptic Variational Inequalities with State Constraints∗

In this paper we investigate optimal control problems governed by elliptic variational inequalities with additional state constraints. We present a relaxed formulation for the problem. With penalization methods and approximation techniques we give qualification conditions to get first-order optimality conditions.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1998